Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells.

نویسندگان

  • Carolyn R Jonas
  • Li H Gu
  • Yvonne S Nkabyo
  • Yanci O Mannery
  • Nelly E Avissar
  • Harry C Sax
  • Dean P Jones
  • Thomas R Ziegler
چکیده

Glutamine (Gln) and keratinocyte growth factor (KGF) each stimulate intestinal epithelial cell growth, but regulatory mechanisms are not well understood. We determined whether Gln and KGF alter intra- and extracellular thiol/disulfide redox pools in Caco-2 cells cultured in oxidizing or reducing cell medium and whether such redox variations are a determinant of proliferative responses to these agents. Cells were cultured over a physiological range of oxidizing to reducing extracellular thiol/disulfide redox (Eh) conditions, obtained by varying cysteine (Cys) and cystine (CySS) concentrations in cell medium. Cell proliferation was determined by 5-bromo-2-deoxyuridine (BrdU) incorporation. Gln (10 mmol/l) or KGF (10 microg/l) did not alter BrdU incorporation at reducing Eh (-131 to -150 mV), but significantly increased incorporation at more oxidizing Eh (Gln at 0 to -109 mV; KGF at -46 to -80 mV). Cellular glutathione/glutathione disulfide (GSH/GSSG) Eh was unaffected by Gln, KGF, or variations in extracellular Cys/CySS Eh. Control cells largely maintained extracellular Eh at initial values after 24 h (-36 to -136 mV). However, extracellular Eh shifted toward a narrow physiological range with Gln and KGF treatment (Gln -56 to -88 mV and KGF -76 to -92 mV, respectively; P < 0.05 vs. control). The results indicate that thiol/disulfide redox state in the extracellular milieu is an important determinant of Caco-2 cell proliferation induced by Gln and KGF, that this control is independent of intracellular GSH redox status, and that both Gln and KGF enhance the capability of Caco-2 cells to modulate extremes of extracellular redox.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells.

Control of extracellular thiol-disulfide redox potential (E(h)) is necessary to protect cell surface proteins from external oxidative and reductive stresses. Previous studies show that human colonic epithelial Caco-2 cells, which grow in cell culture with the apical surface exposed to the medium, regulate extracellular cysteine/cystine E(h) to physiological values (approximately -80 mV) observe...

متن کامل

Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.

Cellular redox, maintained by the glutathione (GSH)- and thioredoxin (Trx)-dependent systems, has been implicated in the regulation of a variety of biological processes. The redox state of the GSH system becomes oxidized when cells are induced to differentiate by chemical agents. The aim of this study was to determine the redox state of cellular GSH/glutathione disulfide (GSH/GSSG) and Trx as a...

متن کامل

Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state.

BACKGROUND Oxidative stress, a contributing factor to atherosclerosis, causes oxidation of biological thiols, which can be quantified in terms of the thiol/disulfide redox. The major thiol/disulfide redox couple in human plasma is cysteine (Cys) and its disulfide, cystine (CySS). Although atherosclerosis has previously been associated with Cys/CySS oxidation, whether oxidation of Cys/CySS contr...

متن کامل

Thiol/Disulfide redox switches in the regulation of heme binding to proteins.

This review focuses on thiol/disulfide redox switches that regulate heme binding to proteins and modulate their activities. The importance of redox switches in metabolic regulation and the general mechanism by which redox switches modulate activity are discussed. Methods are described to characterize heme-binding sites and to assess their physiological relevance. For thiol/disulfide interconver...

متن کامل

Recombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells

Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 285 6  شماره 

صفحات  -

تاریخ انتشار 2003